Note

The reaction of methyl 5-thio-3-O-toluene-p-sulfonyl- α -D-glucopyranoside and its triacetate with sodium azide

Najim A. Al-Masoudi a,* and Wolfgang Pfleiderer b

(Received July 10th, 1992; accepted October 19th, 1992)

There is considerable interest at present in nucleosides containing an azido residue¹⁻⁶ in their sugar moieties as potential agents for use against AIDS and related diseases. As part of a program on sulfur-in-the-ring sugars⁷⁻¹¹ together with their azido and amino analogues^{12,13}, the results of some azide displacement reactions are now reported.

Reaction of methyl 2,4,6-tri-O-acetyl-3-O-toluene-p-sulfonyl- α -D-glucopyranoside⁸ (1) with sodium azide in boiling N,N-dimethylformamide gave the expected allo-azide 2 (10%) together with the 3-deoxyhexenopyranosides 3 (10%) and 4 (15%). The structures of 2-4 followed from their ¹H NMR spectra (Table I). Thus, the spectrum of 2 revealed only one large $J_{\rm H,H}$ value ($J_{4,5}$ 12.0 Hz) in keeping with an α -allopyranoside in the 4C_1 conformation⁷. The lack of signals for H-2 and H-4 confirmed 3 and 4 to be the 2- and 3-enopyranosides, and the J values accorded with the expected $^{\rm S}H_5$ and $^{\rm S}H_1$ conformations, respectively. The J values for 3 were similar to those of the oxygen analogue¹⁴. The low yields of 2-4 were not unexpected. Displacements at C-3 of α -glucopyranoside derivatives are subject to a syn-diaxial interaction of the incoming nucleophile and the C-1 substituent, and the hexenopyranosides 3 and 4 are the products of relatively unfavourable ciselimination reactions.

When methyl 5-thio-3-O-toluene-p-sulfonyl- α -D-glucopyranoside⁸ (5) was subjected to azide displacement, the main product was the *gluco*-azide 6, isolated as the triacetate 7 in modest yield. The *gluco* structure of 7 was indicated by the ¹H NMR spectrum ($J_{2,3} = J_{3,4} = 10.5$, $J_{4,5} = 11.0$ Hz). The observed displacement with retention of configuration must be the result of a double inversion. The possibility of an initial intramolecular displacement by sulfur is ruled out because the displacement on the triacetate 1 proceeded normally, albeit in low yield. A more likely explanation is that the tosylate 5 is converted first into either or both of the

^a Chemistry Department, College of Science, University of Basrah, Basrah (Iraq)

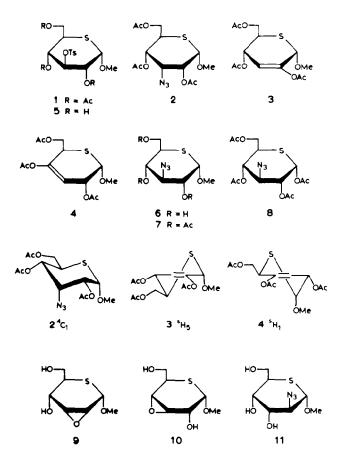
^b Facultät für Chemie, Universität Konstanz, Postfach 5560, D-7750 Konstanz (Germany)

^{*} Corresponding author.

Comp- pound	H-1 J _{1,2}	H-2 J _{2,3}	H-3 J _{3,4}	H-4 J _{4,5}	H-5	H-6a H-6b	Other signals	
					$J_{5,6a} - J_{5,6b}$	$J_{6a,6b}$		
2	4.50d	4.61dd	4.18dd	4.80dd	3.14ddd	4.35ddd	4.0dd	3.49 (OMe), 2.14,
	3.0	4.0	5.0	12.0	5.0 4.0	12.0		2.13, 2.12 (3 Ac)
3	5.71s		5.54d	5.60t	3.83dt	4.49dd	4.24dd	3.52 (OMe), 2.18
			3.0	8.8	5.0 4.0	11.0		(2 Ac), 2.13 (Ac)
4	5.60d	5.11dd	5.63d		3.47dt	4.50dd	4.34dd	3.50 (OMe), 2.18,
	3.5	2.5			5.0 4.0	11.0		2.07 (3 Ac)
7	4.66d	5.04dd	3.95dd	5.13dd	3.34ddd	4.33dd	4.05dd	3.45 (OMe), 2.18,
	3.0	11.0	11.0	11.0	5.0 3.5	12.0		2.17, 2.16 (3 Ac)
8	6.09d	5.39dd	4.0t	5.15t	3.45ddd	4.49dd	4.10dd	2.19, 2.17, 2.09,
	2.0	10.5	10.5	11.0	5.5 4.0	13.0		2.0 (4 Ac)

TABLE I

H NMR data (δ in ppm, J in Hz)


allo-epoxides 9 and 10, which then undergo azide opening 12 . Some support for this explanation came from the observation that the 2,3-epoxide 9^{10} reacted with sodium azide in N,N-dimethylformamide to give, after acetylation, 7 as the major product. This result also is unusual since the altro-azide 11 might have been expected as the result of diaxial opening of the epoxide ring in 9 in the more favourable sH_5 conformation. It has been shown in studies with the related ribo-epoxides 15 that C-2 of a 2,3-epoxide is relatively unreactive and ring opening occurs preferentially at C-3 presumably via the less favoured 5H_8 conformation. Acetolysis of 7 gave the α -tetra-acetate 8 ($J_{1,2}$ 2.0 Hz).

EXPERIMENTAL

Melting points were determined with a Buchi apparatus, and are uncorrected. The ¹H NMR spectra were recorded with a Bruker WM 250 spectrometer on solutions in CDCl₃ (internal Me₄Si). Optical rotations were determined with a Perkin-Elmer Type 141 polarimeter. The purity of products was monitored by TLC on Kieselgel 60 (Merck).

Reactions with sodium azide.—(a) Methyl 2,4,6-tri-O-acetyl-5-thio-3-O-toluene-p-sulfonyl- α -D-glucopyranoside (1). A solution of 1 (1.14 g) in N,N-dimethylformamide (50 mL) containing sodium azide (0.35 g) was heated under reflux for 7 h, then concentrated in vacuo. The residue was partitioned between water and CH₂Cl₂, and the organic phase was dried (MgSO₄), filtered, and concentrated. Column chromatography (7:3 toluene-EtOAc) of the syrupy residue on silica gel gave, first, methyl 2,3,6-tri-O-acetyl-5-thio- α -D-erythro-hex-2-enopyranoside (3), isolated as a syrup (74 mg, 10%); [α]_D +54° (c 1.17, CHCl₃). Mass spectrum: m/z 318.0795 (M⁺) (C₁₃H₁₈O₇S calcd 318.0773).

Eluted second was methyl 2,4,6-tri-O-acetyl-3-deoxy-5-thio- α -D-hex-3-enopyranoside (4), isolated as a syrup (112 mg, 15%); $[\alpha]_D$ +152° (c 1.11, CHCl₃). Mass spectrum: m/z 318.0800 (M⁺) ($C_{13}H_{18}O_7S$ calcd 318.0773).

Further elution gave methyl 2,4,6-tri-O-acetyl-3-azido-3-deoxy-5-thio- α -D-allopyranoside (2), isolated as a syrup (80 mg, 10%); $[\alpha]_D$ + 160° (c 1.0, CHCl₃). Mass spectrum: m/z 319.3532 (M⁺ – N₃) (C₁₃H₁₉N₃O₇S calcd 319.3442).

- (b) Methyl 5-thio-3-O-toluene-p-sulfonyl- α -D-glucopyranoside (5). A solution of 5 (1.0 g) in N,N-dimethylformamide (50 mL) containing sodium azide (1.11 g) was heated under reflux for 2.5 h, then concentrated in vacuo. The residue was treated with pyridine (35 mL) and Ac₂O (20 mL) for 2 days at room temperature. Work-up in the usual way and column chromatography (19:1 CH₂Cl₂-MeOH) of the product on silica gel (120 g) afforded methyl 2,4,6-tri-O-acetyl-3-azido-3-deoxy-5-thio- α -D-glucopyranoside (7; 0.36 g, 36%); mp 85–86°C (from di-isopropyl etherether); [α]_D +208° (c 0.5, CHCl₃). Anal. Calcd for C₁₃H₁₉N₃O₇S: C, 43.23; H, 5.30; N, 11.63%. Found: C, 43.31; H, 5.32; N, 11.69.
- (c) Methyl 2,3-anhydro-5-thio- α -D-allopyranoside (9). A solution of 9 (0.50 g) and sodium azide (0.35 g) in N,N-dimethylformamide (20 mL) was heated under reflux for 3 h, then concentrated in vacuo. The residue was treated with dry pyridine (30 mL) and Ac₂O (15 mL) for 2 days at room temperature, and the mixture was

worked-up in the usual manner. Column chromatography (7:3 toluene-EtOAc) of the residue (0.83 g) on silica gel gave 7 (0.66 g, 71%), identical with the product in (b).

1,2,3,4,6-Tetra-O-acetyl-3-azido-3-deoxy-5-thio- α -D-glucopyranose (8).—The glycoside 7 (0.33 g) was added to a stirred mixture of Ac₂O (25 mL), acetic acid (0.5 mL), and concd H₂SO₄ (0.1 mL) at 0°C. After storage for 48 h at room temperature, the mixture was partitioned between CH₂Cl₂ and cold, satd aq NaHCO₃. The organic phase was dried (MgSO₄), filtered, and concentrated. Column chromatography (4:1 toluene–EtOAc) of the syrupy residue on silica gel afforded 8 (0.11 g, 31%); $[\alpha]_D$ +128° (c 0.75, CHCl₃). Mass spectrum: m/z 330.2693 (M⁺-OAc) (C₁₄H₁₉N₃O₈S calcd 330.2675).

ACKNOWLEDGMENT

Dr. N.A. Hughes (University of Newcastle upon Tyne) is thanked for helpful discussion.

REFERENCES

- 1 M.E. Jung and J.M. Gardiner, J. Org. Chem., 56 (1991) 2614-2615.
- 2 H. Mitsuya, K.J. Weinhold, P.A. Fuman, M.H. St. Clair, S. Nusinoff-Lehrman, R.C. Gallo, D.P. Bolognesi, D.W. Barry, and S. Broder, *Proc. Natl. Acad. Sci. U.S.A.*, 82 (1985) 7096–7100.
- 3 H. Mitsuya and S. Broder, Proc. Natl. Acad. Sci. U.S.A., 83 (1986) 1911-1915.
- 4 M.A. Fischl, D.D. Richman, M.H. Grieco, M.S. Gottlieb, P.A. Volberding, O.L. Laskin, J.M. Leedom, J.E. Groopmann, D. Mildvan, R.T. Schooley, G.G. Jackson, D.T. Durack, and D. King. New Engl. J. Med., 317 (1987) 185–191.
- 5 R.F. Schinazi, C.K. Chu, P. Feorino, and J.P. Sommadosi, International Conference on Antimicrobial Agents and Chemotherapy, 26th, New Orleans, LA, September 28–October 1, 1986.
- 6 R.F. Schinazi, C.K. Chu, P. Feorino, M.K. Ahn, P. Sommadosi, and H. McClure, Symposium—Human Retroviruses, Cancer and Aids: Approaches to Prevention and Therapy. Keystone Co., April 1–6, 1987.
- 7 N.A. Al-Masoudi and N.A. Hughes, Carbohydr. Res., 148 (1986) 25-37.
- 8 N.A. Al-Masoudi and N.A. Hughes, Carbohydr. Res., 148 (1986) 39-49.
- 9 N.A. Al-Masoudi and N.A. Hughes, J. Chem. Soc., Perkin Trans. 1, (1987) 2061-2067.
- 10 N.A. Al-Masoudi and N.A. Hughes, J. Chem. Soc., Perkin Trans. 1, (1987) 1413-1420.
- 11 N.A. Al-Masoudi and N.A. Hussein, J. Iraqi, Chem. Soc., 12 (1987) 149–158; Chem. Abstr., 110 (1989) 2131970.
- 12 N.A. Al-Masoudi, Carbohydr. Res., 228 (1992) 339-346.
- 13 N.A. Al-Masoudi and N.J. Tooma, Carbohydr. Res., 239 (1993) 273-278.
- 14 R.U. Lumieux and R.J. Bose, Can. J. Chem., 44 (1966) 1855-1862.
- 15 N.A. Hughes and N.M. Munkombwe, Carbohydr. Res., 136 (1985) 411-418.